Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298192

RESUMO

Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.


Assuntos
Antineoplásicos , Flavonas , Neoplasias da Próstata , Masculino , Humanos , Flavonas/farmacologia , Flavonas/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Apoptose , Apigenina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
2.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362072

RESUMO

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Assuntos
Antineoplásicos , Flavonas , Animais , Humanos , Masculino , Camundongos , Acetilação , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz , Camundongos Nus , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430695

RESUMO

Phenolic plant constituents are well known for their health-promoting and cancer chemopreventive properties, and products containing such constituents are therefore readily consumed. In the present work, we isolated 13 phenolic constituents of four different compound classes from the aerial parts of the Moldavian dragonhead, an aromatic and medicinal plant with a high diversity on secondary metabolites. All compounds were tested for their apoptotic effect on myeloma (KMS-12-PE) and AML (Molm-13) cells, with the highest activity observed for the flavone and flavonol derivatives. While diosmetin (6) exhibited the most pronounced effects on the myeloma cell line, two polymethylated flavones, namely cirsimaritin (1) and xanthomicrol (3), were particularly active against AML cells and therefore subsequently investigated for their antiproliferative effects at lower concentrations. At a concentration of 2.5 µM, cirsimaritin (1) reduced proliferation of Molm-13 cells by 72% while xanthomicrol (3) even inhibited proliferation to the extent of 84% of control. In addition, both compounds were identified as potent FLT3 inhibitors and thus display promising lead structures for further drug development. Moreover, our results confirmed the chemopreventive properties of flavonoids in general, and in particular of polymethylated flavones, which have been intensively investigated especially over the last decade.


Assuntos
Flavonas , Lamiaceae , Leucemia Mieloide Aguda , Lignanas , Mieloma Múltiplo , Flavonóis/farmacologia , Flavonóis/química , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/química , Lamiaceae/química , Leucemia Mieloide Aguda/tratamento farmacológico , Fenóis
4.
Food Funct ; 13(19): 9832-9846, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047466

RESUMO

Celery seeds are commonly used as condiments and in herbal teas with high medicinal value. In the present study, we investigated the contents of extracts derived under different extraction conditions and determined the optimal conditions for only extracting flavone glycosides from celery seeds. The compositional analysis identified three primary flavone glycosides in the ethanolic extract, and apiin, graveobioside A, and graveobioside B were isolated. Apigenin, luteolin, and chrsyeriol were obtained by the acid hydrolysis of flavone glycosides under high-temperature conditions. Here we investigated the inhibitory activity of apigenin and apiin on xanthine oxidase by reducing the rate of oxidative cytochrome C and found that both apigenin and apiin reduced cytochrome C production, except for low concentrations of apiin. In vivo analysis with hyperuricemia mice and rats showed that apiin had excellent uric acid-lowering effects and high dose-dependence, while apigenin was relatively slightly uric acid-lowering. In addition, the flavone glycoside extracts from celery seeds exhibited similar effects of reducing uric acid with apiin. Surprisingly, in hyperuricemia rats, the uric acid-lowering effects of high-dose apiin and flavone glycoside extracts were almost comparable to that of allopurinol. Besides, our experimental results showed that apigenin could improve uric acid clearance by increasing the glomerular filtration capacity, which was reflected in reducing the renal function parameters SUN and SCr; also, apiin showed better results. This study also showed that celery seeds have a unique medicinal value in treating hyperuricemia and that the flavone glycoside extracts from celery seeds can be developed as medicine for hyperuricemia.


Assuntos
Apium , Flavonas , Hiperuricemia , Chás de Ervas , Alopurinol/análise , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Apigenina/análise , Apium/química , Citocromos c , Flavonas/química , Glicosídeos/química , Hiperuricemia/tratamento farmacológico , Luteolina/análise , Camundongos , Extratos Vegetais/química , Ratos , Sementes/química , Chás de Ervas/análise , Ácido Úrico , Xantina Oxidase
5.
Phytochemistry ; 203: 113387, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055427

RESUMO

The molecular and electronic structure of parent flavone and 49 (poly)methoxylated flavones (P)MFs were studied theoretically. Selected group of flavonoids consists of compounds naturally occurring in citrus plants or synthetic derivatives of flavone. These compounds exhibit several bioactivities in vitro and in vivo and can protect plants from solar ultraviolet (UV) radiation. Substitution induced structural changes in (P)MFs were correlated with published experimental values of P-glycoprotein inhibition effect. We have demonstrated that the C5-C10 bond length of 1-benzopyran-4-one moiety represents a suitable structural descriptor for this bioactivity. Obtained linear equations for the compounds with substituted and non-substituted C3 position enable the prediction of the potential anti-cancer chemo-preventive effect of the rest of studied (P)MFs. Consequently, potentially more effective substances were suggested. Optical properties of (P)MFs and their relationship with the molecular structure was examined in detail for methanol environment, as well. The multiple linear regression model was applied to assess the correlation between experimental absorption and fluorescence wavelengths with the theoretically predicted ones. The UV photo-protective potential of studied derivatives was estimated from the calculated optical properties.


Assuntos
Citrus , Flavonas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Flavonas/química , Flavonas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Metanol
6.
Steroids ; 187: 109099, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970223

RESUMO

Structural modification of the phenolic A-ring of estrogens at C-2 and/or C-3 significantly reduces or eliminates the hormonal effects of the compounds, thus the incorporation of other pharmacophores into these positions can provide biologically active derivatives suitable for new indications, without possessing unwanted side effects. As part of this work, A-ring integration of estradiol with chalcones and flavones was carried out in the hope of obtaining novel molecular hybrids with anticancer action. The syntheses were performed from 2-acetylestradiol-17ß-acetate which was first reacted with various (hetero)aromatic aldehydes in a pyrrolidine-catalyzed reaction in DMSO. The chalcones thus obtained were then subjected to oxidative cyclization with I2 in DMSO to afford estradiol-flavone hybrids in good yields. All newly synthesized derivatives were tested in vitro for cytotoxicity on human malignant cell lines of diverse origins as well as on a non-cancerous cell line, and the results demonstrated that estradiol-flavone hybrids containing a structure-integrated flavone moiety were the most active and cancer cell-selective agents. The minimal inhibitory concentration values (IC50) were calculated for selected compounds (3c, 3d and 3e) and their apoptosis inducing capacity was verified by RT-qPCR (real-time quantitative polymerase chain reaction). The results suggest an important structure-activity relationship regarding estradiol-flavone hybrids that could form a promising synthetic platform and rationale for future drug developments.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Flavonas , Aldeídos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Chalcona/química , Chalcona/farmacologia , Chalconas/química , Dimetil Sulfóxido/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estradiol/farmacologia , Estrogênios/farmacologia , Flavonas/química , Flavonas/farmacologia , Humanos , Estrutura Molecular , Pirrolidinas , Relação Estrutura-Atividade
7.
Plant Physiol ; 190(4): 2122-2136, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947689

RESUMO

Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.


Assuntos
Chrysanthemum , Citrus , Diosmina , Flavonas , Chrysanthemum/genética , Chrysanthemum/química , Filogenia , Flavonoides , Flavonas/química , Glucosídeos/química
8.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897938

RESUMO

Antiangiogenic agents attenuate tumours' growth and metastases and are therefore beneficial as an adjuvant or standalone cancer regimen. Drugs with dual antiproliferative and antiangiogenic activities can achieve anticancer efficacy and overcome acquired resistance. In this study, synthetic flavones (5a,b) with reported anticancer activity, and derivatives (4b and 6a), exhibited significant inhibition of endothelial cell tube formation (40-55%, 12 h) at 1 µM, which is comparable to sunitinib (50% inhibition at 1 µM, 48 h). Flavones (4b, 5a,b and 6a) also showed 25-37% reduction in HUVECs migration at 10 µM. In a Western blotting assay, 5a and 5b subdued VEGFR2 phosphorylation by 37% and 57%, respectively, suggesting that VEGFR2 may be their main antiangiogenic target. 5b displayed the best docking fit with VEGFR2 in an in silico study, followed by 5a, emphasizing the importance of the 7-hydroxyl group accompanied by a 4-C=S for activity. Conversely, derivatives with a 4-carbonyl moiety fitted poorly into the target's binding pocket, suggesting that their antiangiogenic activity depends on a different target. This study provides valuable insight into the Structure Activity Relationships (SAR) and modes of action of halogenated flavones with VEGFR2 and highlights their therapeutic potential as antiangiogenic/anticancer lead compounds.


Assuntos
Antineoplásicos , Flavonas , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Células Endoteliais/metabolismo , Flavonas/química , Flavonas/farmacologia , Flavonoides/farmacologia , Fosforilação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
9.
J Agric Food Chem ; 70(28): 8788-8798, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816492

RESUMO

Flavones benefit human health through their anti-inflammatory activity; however, their structure-activity relationship is unclear. Herein, we selected 15 flavones with the same backbone but different substituents and systematically assessed their anti-inflammatory activities in RAW 264.7 regarding cellular-Src kinase (c-Src) affinity, suppression of IκBα phosphorylation, inhibition of nitric oxide (NO) and inducible nitric oxidase (iNOS) production, and downregulation of genes of proinflammatory cytokines interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and tumor necrosis factor α (TNF-α). Overall, our results showed that the double bond between C2-C3 and C3'- and C4'-OH promoted anti-inflammatory activity, while C8- and C5'-OH and the methoxy group on C4' attenuated the overall anti-inflammatory and antioxidant activities. The hydroxyl groups at other positions exhibited more complicated functions. The two most effective flavones are 3',4'-dihydroxyflavone and luteolin with inhibitory concentration (IC50) values for inhibiting the LPS-induced nitric oxide level are 9.61 ± 1.36 and 16.90 ± 0.74 µM, respectively. Furthermore, they suppressed the production of iNOS by approximately 90% and inhibited IL-1ß and IL-6 by more than 95%. Taken together, our results established a relationship between the flavone structure and anti-inflammatory activity in vitro.


Assuntos
Anti-Inflamatórios , Flavonas , Macrófagos , NF-kappa B , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Proteína Tirosina Quinase CSK , Flavonas/química , Flavonas/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
10.
Phytomedicine ; 104: 154285, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809375

RESUMO

BACKGROUND: 5-Demethylnobiletin (5DN) is a polymethoxyflavone (PMF) primarily found in citrus fruits. It has various health-promoting properties and hence has attracted significant attention from scholars worldwide. PURPOSE: This review is the first to systematically summarize the recent research progress of 5DN, including its pharmacological activity, mechanism of action, pharmacokinetics, and toxicological effects. In addition, the pharmacological mechanism of action of 5DN has been discussed from a molecular biological perspective, and data from in vivo and in vitro animal studies have been compiled to provide a more thorough understanding of 5DN as a potential lead drug. METHODS: Data were extracted from SciFinder, PubMed, ScienceDirect and China National Knowledge Infrastructure (CNKI) from database inception to January 2022. RESULTS: 5DN has broad pharmacological activities. It exerts anti-inflammatory effects, promotes apoptosis and autophagy, and induces melanogenesis mainly by regulating the JAK2/STAT3, caspase-dependent apoptosis, ROS-AKT/mTOR, MAPK and PKA-CREB signaling pathways. 5DN can be used for treating diseases such as cancer, inflammation-related diseases, rheumatoid arthritis, and neurodegenerative diseases. To date, there have been only a few toxicological studies on 5DN, and both in vitro and in vivo on 5DN have not revealed significant toxic side effects. Pharmacokinetic studies have revealed that the metabolites of 5DN are mainly 5,3'-didemethylnobiletin (M1); 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), in either, glucuronide-conjugated or monomeric form. The pharmacokinetic products of 5DN, especially M1, possess better activity than 5DN for the treatment of cancer. CONCLUSION: The anticancer effects of 5DN and its metabolites warrant further investigation as potential drug candidates, especially through in vivo studies. In addition, the therapeutic effects of 5DN in neurodegenerative diseases should be examined in more experimental models, and the absorption and metabolism of 5DN should be further investigated in vivo.


Assuntos
Citrus , Flavonas , Animais , Apoptose , Autofagia , Citrus/química , Flavonas/química , Flavonas/farmacologia
11.
J Chromatogr A ; 1672: 463055, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462310

RESUMO

Sauromatum guttatum has been traditionally used in the treatment of snakebite and tumors in India, Pakistan, and China. However, it lacks detailed phytochemical composition like other members of the family Araceae. Therefore, the aim of the present study was to investigate the phytochemical composition of crude methanolic extract and subsequent fractions from S. guttatum tubers and to determine their enzyme inhibitory potentials. The phytochemical profile was studied through tandem high-resolution mass-based phytochemical analysis and Global Natural Product Social (GNPS) molecular networking. Similarly, crude extract and fractions were also investigated for enzyme inhibitory activity against urease and α-glucosidase. Twenty-six compounds were dereplicated belonging to flavone C-glycosides, flavone O-glycosides, phenolic acids, phenolic acid glycosides, and iridoid glycosides. The n-butanol fraction was particularly found rich in flavone di-C-glycosides including schaftoside, isoschaftoside, neoschaftoside, and vicenin-2. The n-butanol fraction exhibited the highest in vitro inhibition against urease and α-glucosidase with IC50 values of 113.7 µg/mL and 155.3 µg/mL, respectively. The results of enzyme inhibition potential were also supported by in silico molecular docking studies against the above-mentioned enzymes. This is the first report on the detailed phytochemical profile of S. guttatum tubers, and these results will contribute to the chemosystematic knowledge of the Araceae family. The results of this study also suggest that S. guttatum may find possible applications in the treatment of gastrointestinal disorders and diabetes.


Assuntos
Araceae , Flavonas , 1-Butanol , Flavonas/química , Glicosídeos/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Urease , alfa-Glucosidases
12.
Food Funct ; 13(9): 4930-4940, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35403181

RESUMO

Precipitation formation commonly occurs in the ageing step of fermented citrus vinegar. Hitherto, the chemical characteristics and biological properties of precipitates remain unveiled. This study focused on investigating the chemical profile, formation mechanism and biological repurposing of precipitates. Nine principal components, two flavonoid glycosides and their aglycones along with five polymethoxyflavones (PMFs), were identified from a methanol extract of precipitates. Using hydrolysis models, we demonstrated that insoluble aglycones were generated through the breakage of glycosidic bonds in flavonoid glycosides under acidic condition. Moreover, soluble bound-PMFs were destroyed by yeast-acid hybrid catalysis to release insoluble free-PMFs to form precipitates. A methanol extract of precipitates exhibited a potent anti-proliferative effect on MCF-7 cells (IC50 = 0.032 µg µL-1) via inhibiting tubulin polymerization. This study will be helpful for the food industry to aid optimizing citrus vinegar brewing and for reutilizing precipitates for functional foods and health products. Furthermore, it also provides a green strategy of PMFs enrichment from citrus using an enzyme-acid hybrid system.


Assuntos
Citrus , Flavonas , Ácido Acético , Citrus/química , Flavonas/química , Flavonoides/química , Glicosídeos , Metanol , Extratos Vegetais/química
13.
Nat Prod Res ; 36(23): 5959-5966, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35245426

RESUMO

Casimiroa edulis La Llave is known to contain unusual 5,6-dimethoxyflavones bearing a variously oxygenated B-ring. Phytochemical investigation of the leaves and the roots of C. edulis achieved the isolation of two new methoxylated flavones, named casedulones A (1) and B (2), together with 12 known analogues. Their unique structures were established with the aid of spectral analyses and total syntheses. Pre-treatment with 20 µM of 1 and 2 suppressed MMP-9 expression in LPS-mediated THP-1 cells, indicating that the characteristic flavonoids in C. edulis could be potential anti-angiogenics for cancer prevention.


Assuntos
Casimiroa , Flavonas , Casimiroa/química , Flavonas/química , Metaloproteinase 9 da Matriz , Extratos Vegetais/química , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/análise
14.
Chem Biol Interact ; 355: 109831, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120918

RESUMO

Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Flavonas/química , Flavonoides/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Flavonas/farmacologia , Flavonoides/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
15.
Food Funct ; 13(5): 2768-2781, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171190

RESUMO

Perilla (Perilla frutescens) seed oil (PO), rich in α-linolenic acid (ALA), can improve cognitive function in healthy elderly Japanese people. Here, supplements containing either PO alone or PO with nobiletin-rich air-dried immature ponkan powder were examined for their effects on cognitive function in 49 healthy elderly Japanese individuals. Patients were enrolled in a 12-month randomized, double-blind, parallel-armed study. Randomized participants in the PO group received soft gelatin capsules containing 1.47 mL (0.88 g of ALA) of PO daily, and those in the PO + ponkan powder (POPP) group received soft gelatin capsules containing both 1.47 mL of PO and 1.12 g ponkan powder (2.91 mg of nobiletin) daily. At the end of intervention, the POPP group showed significantly higher cognitive index scores than the PO group. The pro-cognitive effects of POPP treatment were accompanied by increases in ALA and docosahexaenoic acid levels in red blood cell plasma membranes, serum brain-derived neurotropic factor (BDNF) levels, and biological antioxidant potential. We demonstrate that 12-month intervention with POPP enhances serum BDNF and antioxidant potential, and may improve age-related cognitive impairment in healthy elderly people by increasing red blood cell ω-3 fatty acid levels. Clinical Trial Registry, UMIN000040863.


Assuntos
Antioxidantes/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Suplementos Nutricionais , Flavonas/farmacologia , Perilla frutescens , Ácido alfa-Linolênico/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/administração & dosagem , Antioxidantes/química , Método Duplo-Cego , Ácidos Graxos Ômega-3/metabolismo , Feminino , Flavonas/administração & dosagem , Flavonas/química , Humanos , Masculino , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Resultado do Tratamento , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/química
16.
BMC Complement Med Ther ; 22(1): 10, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000605

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a pivotal cellular phenomenon involved in tumour metastasis and progression. In gastric cancer (GC), EMT is the main reason for recurrence and metastasis in postoperative patients. Acacetin exhibits various biological activities. However, the inhibitory effect of acacetin on EMT in GC is still unknown. Herein, we explored the possible mechanism of acacetin on EMT in GC in vitro and in vivo. METHODS: In vitro, MKN45 and MGC803 cells were treated with acacetin, after which cell viability was detected by CCK-8 assays, cell migration and invasion were detected by using Transwell and wound healing assays, and protein expression was analysed by western blots and immunofluorescence staining. In vivo, a peritoneal metastasis model of MKN45 GC cells was used to investigate the effects of acacetin. RESULTS: Acacetin inhibited the proliferation, invasion and migration of MKN45 and MGC803 human GC cells by regulating the expression of EMT-related proteins. In TGF-ß1-induced EMT models, acacetin reversed the morphological changes from epithelial to mesenchymal cells, and invasion and migration were limited by regulating EMT. In addition, acacetin suppressed the activation of PI3K/Akt signalling and decreased the phosphorylation levels of TGF-ß1-treated GC cells. The in vivo experiments demonstrated that acacetin delayed the development of peritoneal metastasis of GC in nude mice. Liver metastasis was restricted by altering the expression of EMT-related proteins. CONCLUSION: Our study showed that the invasion, metastasis and TGF-ß1-induced EMT of GC are inhibited by acacetin, and the mechanism may involve the suppression of the PI3K/Akt/Snail signalling pathway. Therefore, acacetin is a potential therapeutic reagent for the treatment of GC patients with recurrence and metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Flavonas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Transformador beta1
17.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056733

RESUMO

Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácidos Graxos/química , Flavonas/química , Flavonas/farmacologia , Animais , Antineoplásicos/química , Antioxidantes/química , Avaliação Pré-Clínica de Medicamentos , Esterificação , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Células PC-3 , Ratos , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/metabolismo , Relação Estrutura-Atividade
18.
Chem Biodivers ; 19(1): e202100600, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725898

RESUMO

Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 µM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Flavonas/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biocatálise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Flavonas/metabolismo , Flavonas/uso terapêutico , Glucose/metabolismo , Humanos , Resistência à Insulina , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
19.
Fitoterapia ; 156: 105102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921927

RESUMO

The biochemical class of the polymethoxylated flavonoids represents uncommon phenolic compounds in plants presenting a more marked lipophilic behavior due to the alkylation of its hydroxylic groups. As a polymethoxylated flavone, which concerns a different bioavailability, artemetin (ART) has been examined in vitro against lipid oxidation and its impact on cancer cells has been explored. Despite this flavone only exerted a slight protection against in vitro fatty acid and cholesterol oxidative degradation, ART significantly reduced viability and modulated lipid profile in cancer Hela cells at the dose range 10-50 µM after 72 h of incubation. It induced marked changes in the monounsaturated/saturated phospholipid class, significant decreased the levels of palmitic, oleic and palmitoleic acids, maybe involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, ART compromised normal mitochondrial function, inducing a noteworthy mitochondrial membrane polarization in cancer cells. A dose-dependent absorption of ART was evidenced in HeLa cell pellets (15.2% of the applied amount at 50 µM), coupled to a marked increase in membrane fluidity, as indicate by the dose-dependent fluorescent Nile Red staining (red emissions). Our results validate the ART role as modulatory agent on cancer cell physiology, especially impacting viability, lipid metabolism, cell fluidity, and mitochondrial potential.


Assuntos
Flavonoides/farmacologia , Células HeLa/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Flavonas/química , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Lipídeos/análise , Lipossomos/metabolismo , Microscopia de Fluorescência , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Quercetina/química
20.
Nat Prod Res ; 36(19): 4886-4891, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33813975

RESUMO

(±) Erysectin A (1), a new isoprenylated isoflavone with a rare acetonyl group, along with 15 known compounds including eight isoprenylated isoflavones (2-9), two isoprenylated flavanones (10-11), three flavanones (12-14), a flavone (15), and a chalcone (16), was isolated from the twigs and leaves of Erythrina secundiflora Hassk. Their structures were identified based on their 1 D and 2 D NMR spectral data. All the compounds were isolated from this plant for the first time. Compound 1 showed moderate cytotoxicity on several cancer cell lines.[Formula: see text].


Assuntos
Chalconas , Erythrina , Flavanonas , Flavonas , Isoflavonas , Erythrina/química , Flavanonas/química , Flavonas/química , Isoflavonas/química , Isoflavonas/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA